Análisis del acoplamiento molecular de las moléculas Baicaleína y Baicalina como posibles bloqueantes de la trimerización de la glicoproteína de la espiga del SARS-CoV2
DOI:
https://doi.org/10.32480/rscp.2022.27.2.101Palabras clave:
espícula viral, COVID-19, baicaleína, baicalina, interacción proteína-ligandoResumen
La glicoproteína de la espiga (S) del SARS-CoV2 se encuentra involucrada en el proceso de reconocimiento e infección viral. Debido a esto, la comunidad científica lo considera como blanco para la búsqueda de moléculas bioactivas de origen natural para combatir la Covid-19. Los flavonoides baicaleína y baicalina presentan actividades antivirales contra una gran cantidad de virus, por lo que son buenos candidatos para estudiar su efecto antiviral contra el SARS-CoV2. A fin de identificar y caracterizar in silico las afinidades de interacción de los flavonoides baicaleína y baicalina en el sitio de trimerización de la espiga del SARS-CoV2, se llevaron a cabo pruebas de simulaciones computacionales de acoplamiento molecular entre estos flavonoides y la estructura proteica de la espiga viral en conformaciones cerrada y abierta del ectodominio RBD. Los resultados evidenciaron a la baicaleína en interacción favorable en sitios proximales a la región de trimerización de la proteína, con una ?Gb= -9,12±0,39 kcal.mol-1 y la participación activa de los residuos Arg995, Asp994, Thr998 y Tyr756. Sin embargo, la baicalina demostró afinidad de acoplamiento significativamente favorable (p<0,001) con el sitio de trimerización de esta glicoproteína, con un ?Gb=-9,58±0,18 kcal.mol-1 y la participación activa de los residuos Pro728, Glu780, Ala1020, Leu1024, Lys1028 y Ser1030. Estos hallazgos sugieren que la presencia de ambos flavonoides en interacción con la región de trimerización o en sitios proximales a esta, podrían bloquear el proceso de ensamblaje de esta proteína viral pudiendo interferir con el ciclo replicativo viral, por lo tanto, ambas moléculas pueden ser consideradas como potenciales candidatos para posteriores estudios experimentales.
Métricas
Descargas
Referencias
(1) Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 27 de marzo de 2020;367(6485):1444-8.
(2) Jaimes JA, Millet JK, Whittaker GR. Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. iScience. 26 de junio de 2020;23(6):101212.
(3) Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 13 de marzo de 2020;367(6483):1260-3.
(4) Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Journal of Biomolecular Structure and Dynamics. 2 de noviembre de 2021;39(16):6306-16.
(5) Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sciences. 15 de septiembre de 2020;257:118056.
(6) Lippi G, Lavie CJ, Henry BM, Sanchis-Gomar F. Do genetic polymorphisms in angiotensin converting enzyme 2 (ACE2) gene play a role in coronavirus disease 2019 (COVID-19)? Clinical Chemistry and Laboratory Medicine (CCLM). 1 de septiembre de 2020;58(9):1415-22.
(7) Xia S, Lan Q, Su S, Wang X, Xu W, Liu Z, et al. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Sig Transduct Target Ther. 12 de junio de 2020;5(1):1-3.
(8) Bongini P, Trezza A, Bianchini M, Spiga O, Niccolai N. A possible strategy to fight COVID-19: Interfering with spike glycoprotein trimerization. Biochemical and Biophysical Research Communications. 12 de julio de 2020;528(1):35-8.
(9) Fernández Alonso JL. Notas sobre Scutellaria (Labiatae) en Colombia y Ecuador. 1990 [citado 27 de abril de 2022]; Disponible en: https://digital.csic.es/handle/10261/32879
(10) de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM. The effects of baicalein and baicalin on mitochondrial function and dynamics: A review. Pharmacological Research. 1 de octubre de 2015;100:296-308.
(11) Huang T, Liu Y, Zhang C. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review. Eur J Drug Metab Pharmacokinet. 1 de abril de 2019;44(2):159-68.
(12) Muto R, Motozuka T, Nakano M, Tatsumi Y, Sakamoto F, Kosaka N. The chemical structure of new substance as the metabolite of baicalin and time profiles for the plasma concentration after oral administration of sho-saiko-to in human. Yakugaku Zasshi. 1 de marzo de 1998;118(3):79-87.
(13) Zhang L, Lin G, Zuo Z. High-performance liquid chromatographic method for simultaneous determination of baicalein and baicalein 7-glucuronide in rat plasma. Journal of Pharmaceutical and Biomedical Analysis. 15 de noviembre de 2004;36(3):637-41.
(14) Hamada H, Hiramatsu M, Edamatsu R, Mori A. Free Radical Scavenging Action of Baicalein. Archives of Biochemistry and Biophysics. 1 de octubre de 1993;306(1):261-6.
(15) Shieh DE, Liu LT, Lin CC. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res. 1 de septiembre de 2000;20(5A):2861-5.
(16) Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, et al. The Fascinating Effects of Baicalein on Cancer: A Review. International Journal of Molecular Sciences. octubre de 2016;17(10):1681.
(17) Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K. Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus. International Journal of Molecular Sciences. diciembre de 2012;13(12):16785-95.
(18) Su ZZ, Dou J, Xu ZP, Guo QL, Zhou CL. A novel inhibitory mechanism of baicalein on influenza A/FM1/1/47 (H1N1) virus: interference with mid-late mRNA synthesis in cell culture. Chinese Journal of Natural Medicines. 1 de noviembre de 2012;10(6):415-20.
(19) Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJH, Higgs S, et al. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Research. 1 de septiembre de 2016;133:50-61.
(20) Lalani SS, Anasir MI, Poh CL. Antiviral activity of silymarin in comparison with baicalein against EV-A71. BMC Complement Med Ther. 23 de marzo de 2020;20(1):97.
(21) Oo A, Teoh BT, Sam SS, Bakar SA, Zandi K. Baicalein and baicalin as Zika virus inhibitors. Arch Virol. 1 de febrero de 2019;164(2):585-93.
(22) Islam R, Parves MdR, Paul AS, Uddin N, Rahman MdS, Mamun AA, et al. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics. 13 de junio de 2021;39(9):3213-24.
(23) Liu H, Ye F, Sun Q, Liang H, Li C, Li S, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Journal of Enzyme Inhibition and Medicinal Chemistry. 1 de enero de 2021;36(1):497-503.
(24) Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M. Combining Global and Local Measures for Structure-Based Druggability Predictions. J Chem Inf Model. 27 de febrero de 2012;52(2):360-72.
(25) Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Research. 1 de enero de 2000;28(1):235-42.
(26) Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Research. 4 de enero de 2016;44(D1):D1202-13.
(27) Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics. 13 de agosto de 2012;4(1):17.
(28) Gayozo E, Rojas L. Análisis estructural de interacciones in silico de fitoconstituyentes de Solanum americanum, Solanum guaraniticum y Solanum lycopersicum con la proteína tripanotiona reductasa de Leishmania infantum. Steviana. 2020;12(2):31-54.
(29) Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010;31(2):455-61.
(30) Biovia DS. BIOVIA Discovery Studio. Dassault Systèmes. 2020.
(31) Hammer O, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. 9.
(32) Xiu S, Dick A, Ju H, Mirzaie S, Abdi F, Cocklin S, et al. Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. J Med Chem. 12 de noviembre de 2020;63(21):12256-74.
(33) Dhorajiwala TM, Halder ST, Samant L. Comparative In Silico Molecular Docking Analysis of L-Threonine-3-Dehydrogenase, a Protein Target Against African Trypanosomiasis Using Selected Phytochemicals. Journal of Applied Biotechnology Reports. 11 de septiembre de 2019;6(3):101-8.
(34) Smith RD, Engdahl AL, Dunbar JB, Carlson HA. Biophysical Limits of Protein–Ligand Binding. J Chem Inf Model. 27 de agosto de 2012;52(8):2098-106.
(35) Atkovska K, Samsonov SA, Paszkowski-Rogacz M, Pisabarro MT. Multipose Binding in Molecular Docking. International Journal of Molecular Sciences. febrero de 2014;15(2):2622-45.
(36) Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Frontiers in Medicine. 2020;7.Disponible en: https://www.frontiersin.org/article/10.3389/fmed.2020.00444
(37) Baig AM, Khaleeq A, Syeda H, Bibi N. Docking Prediction of Levodopa in the Receptor Binding Domain of Spike Protein of SARS-CoV-2. ACS Pharmacol Transl Sci. 12 de febrero de 2021;4(1):406-9.
(38) Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci USA. 10 de enero de 2017;114(2):206-14.
(39) Che QM, Huang XL, Li YM, Kun Z, Teruaki A, Masao H. Studies on metabolites of baicalin in human urine. Zhongguo Zhong Yao Za Zhi. 1 de noviembre de 2001;26(11):768-9.
(40) Lai MY, Hsiu SL, Chen CC, Hou YC, Chao PDL. Urinary Pharmacokinetics of Baicalein, Wogonin and Their Glycosides after Oral Administration of Scutellariae radix in Humans. Biological and Pharmaceutical Bulletin. 2003;26(1):79-83.
(41) Tian S, He G, Song J, Wang S, Xin W, Zhang D, et al. Pharmacokinetic study of baicalein after oral administration in monkeys. Fitoterapia. 1 de abril de 2012;83(3):532-40.
(42) Zhang L, Lin G, Zuo Z. Involvement of UDP-Glucuronosyltransferases in the Extensive Liver and Intestinal First-Pass Metabolism of Flavonoid Baicalein. Pharm Res. 16 de noviembre de 2006;24(1):81.
(43) Tian S, Du L, Wang S, He G, Yang T, Li X, et al. Pharmacokinetic Study of Baicalein and Its Major Metabolites after iv Administration in Dogs. Chinese Herbal Medicines. 2011;196-201.
(44) Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, et al. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep. 26 de junio de 2014;4(1):5452.
(45) Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, AbuBakar S. Novel antiviral activity of baicalein against dengue virus. BMC Complementary and Alternative Medicine. 9 de noviembre de 2012;12(1):214.
(46) Hassandarvish P, Rothan HA, Rezaei S, Yusof R, Abubakar S, Zandi K. In silico study on baicalein and baicalin as inhibitors of dengue virus replication. RSC Adv. 24 de marzo de 2016;6(37):31235-47.
(47) Dou J, Chen L, Xu G, Zhang L, Zhou H, Wang H, et al. Effects of baicalein on Sendai virus in vivo are linked to serum baicalin and its inhibition of hemagglutinin-neuraminidase. Arch Virol. 1 de mayo de 2011;156(5):793-801.
(48) Jo S, Kim S, Kim DY, Kim MS, Shin DH. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. Journal of Enzyme Inhibition and Medicinal Chemistry. 1 de enero de 2020;35(1):1539-44.
(49) Huang S, Liu Y, Zhang Y, Zhang R, Zhu C, Fan L, et al. Baicalein inhibits SARS-CoV-2/VSV replication with interfering mitochondrial oxidative phosphorylation in a mPTP dependent manner. Sig Transduct Target Ther. 13 de noviembre de 2020;5(1):1-3.
(50) Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. International Journal of Antimicrobial Agents. 1 de junio de 2020;55(6):105948.
(51) Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. International Journal of Antimicrobial Agents. 1 de agosto de 2020;56(2):105998.
(52) Boriskin YS, Leneva IA, Pecheur EI, Polyak SJ. Arbidol: A Broad-Spectrum Antiviral Compound that Blocks Viral Fusion. Current Medicinal Chemistry. 1 de abril de 2008;15(10):997-1005.
(53) Leneva IA, Fediakina IT, Gus’kova TA, Glushkov RG. Sensitivity of various influenza virus strains to arbidol. Influence of arbidol combination with different antiviral drugs on reproduction of influenza virus A. Ter Arkh. 1 de enero de 2005;77(8):84-8.
(54) Leneva IA, Burtseva EI, Yatsyshina SB, Fedyakina IT, Kirillova ES, Selkova EP, et al. Virus susceptibility and clinical effectiveness of anti-influenza drugs during the 2010–2011 influenza season in Russia. International Journal of Infectious Diseases. 1 de febrero de 2016;43:77-84.
(55) Brooks MJ, Burtseva EI, Ellery PJ, Marsh GA, Lew AM, Slepushkin AN, et al. Antiviral activity of arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. Journal of Medical Virology. 2012;84(1):170-81.
(56) Shi L, Xiong H, He J, Deng H, Li Q, Zhong Q, et al. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch Virol. 1 de agosto de 2007;152(8):1447-55.
(57) Pécheur EI, Borisevich V, Halfmann P, Morrey JD, Smee DF, Prichard M, et al. The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses. Journal of Virology. 90(6):3086-92.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Revista de la Sociedad Científica del Paraguay

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El/los autores autorizan a la Revista de la Sociedad Científica del Paraguay a publicar y difundir el articulo del cual son autores, por los medios que considere apropiado.