Analysis of Pre-school Education from Paraguay through Machine Learning Techniques
DOI:
https://doi.org/10.32480/rscp.2019-24-2.293-304Keywords:
Pre-school education, Paraguay, educational data miningAbstract
Pre-school education is the key to establish the knowledge base and skills that will be of vital importance in the future. In Paraguay, the Department od Statististics at the Ministry of Education and Science ha collected data about the school enrolment of children throughout the contry. In this work a descriptive analysis is carried out using an unsupervised learning approach. For such purpose, the following vairables were selected: Department, year, sex, geographical area (rural or urban), sector(official, charter school or private) y level (first or second). Results achieved are promising and help to understand the current status of Paraguay regarding Pre-school education. The general conclusions of this works are, on one side, that EDM is an apporach that provides pwerfoul tools to analyse data in education. On the other hand, when including the context of needs and socio-economic reality of the country, the major cause of school dropout is the economic factor.
Metrics
Downloads
References
2. UNESCO. Institute of Statistics. Paraguay country statistical data, 2018.
3. Banco Mundial. Informe del Banco Mundial. Washington DC: Banco Mundial, 2018. Disponible en: www.worldbank.org
4. Ministerio de Educación y Ciencias. Datos abiertos matriculaciones en Educación Inicial, 2016. Disponible en: https://datos.mec.gov.py/data/matriculaciones_inicial
5. Juntos por la Educación. Financiamiento público de la educación en el Paraguay. Notas para el debate y construcción de políticas públicas. Asunción, Paraguay, 2019.
6. Hegazi MO, Abugroon MA. The state of the art on educational data mining in higher education. International. Journal of Computer Trends and Technology. 2016;31(1):46-56.
7. MacQueen JB. Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967:281–297.
8. Huang Z. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Variables. Data Mining and Knowledge Discovery. 1998;2:283-304.
9. Huang Z. A fast clustering algorithm to cluster very large categorical data sets in data mining. Proceedings of the SIGMOD. Workshop on Research Issues on Data Mining and Knowledge Discovery. 1997:1–8.
10. Szepannek G. ClustMixType: User-Friendly Clustering of Mixed-Type Data in R. The R Journal. 2018;10(2):200-208.
11. Core Team R. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2019.
12. Kiers HAL. Simple structure in Component Analysis Techniques for mixtures of qualitative and quantitative variables. Psychometrika. 1991;56:197-212.
13. Chavent M, Kuentz-Simont V, Labenne A, Saracco J. Multivariate Analysis of Mixed Data: The PCAMix data R package, aXiv. 2017; 1411(4911).
Downloads
Published
Issue
Section
License
El/los autores autorizan a la Revista de la Sociedad Científica del Paraguay a publicar y difundir el articulo del cual son autores, por los medios que considere apropiado.