Study of Araucaria angustifolia nuts by Gamma Spectrometry and X-Ray Fluorescence

Authors

  • Edher Zacarías Herrera State University of Londrina, Department of Physics, Londrina, Paraná, Brazil
  • Avacir Casanova Andrello State University of Londrina, Department of Physics, Londrina, Paraná, Brazil
  • Carlos Roberto Appoloni State University of Londrina, Department of Physics, Londrina, Paraná, Brazil

DOI:

https://doi.org/10.32480/rscp.2019-24-2.262-273

Keywords:

Araucaria angustifolia, EDXRF, dose, radiation

Abstract

The seed of Araucaria angustifolia is largely produced and consumed in Parana state, Brazil. It has an estimated annual consumption of approximately 0.167 kg per capita. The samples of seeds were acquired in 8 different commercial points of Londrina city in the state of Paraná, Brazil. To determine the natural level of radiation and elemental composition were analysed the seed pulp and peels, to determine the level of radiation in these samples and to calculate the effective dose per intake, the gamma ray spectrometry was applied using the HPGe detector with a 60% relative efficiency, and the X-rays Fluorescent by Dispersive Energy (EDXRF) was applied for elemental identification of the composition with a spectrometer from Shimadzu EDX-720 model. The samples were qualitatively analyzed by EDXRF, where the elements K, Fe, Cu, Zn, Rb, Ca, P, Mg and Sr were found in pulp and peels of seed, however, the elements Mg and Sr were detected only in the peel samples. The results obtained by gamma spectrometry showed that the radioactive activities in the Araucaria angustifolia pulp per kilogram in nature, for 226Ra ranged from 0.691 to 2.269 Bq/kg, the interval activity measured for the 228Ra were 0.386 to 1.767 Bq/kg and the 40K were 283.405 to 1,536.820 Bq/kg. Activities of 137Cs were detected in the pulp and peels of seed. The average dose per intake was 0.68 µSv/year for 226Ra and 0.35 µSv/year for 228Ra.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

1. Knoll GF, Kraner HW. Radiation Detection and Measurement. Proceedings of the IEEE. 1981.
2. Desideri D, Meli MA, Roselli C. Natural and artificial radioactivity determination of some medicinal plants. J Environ Radioact. 2010;101(9):751–6.
3. Peirson DH. Artificial radioactivity in Cumbria: summary of an assessment by measurement and modelling. J Environ Radioact. 1988;6(1):61–75.
4. Steinhauser G, Merz S, Hainz D, Sterba JH. Artificial radioactivity in environmental media (air, rainwater, soil, vegetation) in Austria after the Fukushima nuclear accident. Environ Sci Pollut Res. 2013;20(4):2527–34.
5. Baggoura B, Noureddine A, Benkrid M. Level of natural and artificial radioactivity in Algeria. Appl Radiat Isot. 1998;49(7):867–73.
6. Antovic I, Antovic NM. Determination of concentration factors for Cs-137 and Ra-226 in the mullet species Chelon labrosus (Mugilidae) from the South Adriatic Sea. J Environ Radioact, 2011.
7. Shcheglov AI, Tsvetnova OB, Klyashtorin A. The fate of Cs-137 in forest soils of Russian Federation and Ukraine contaminated due to the Chernobyl accident. J Geochemical Explor. 2014;142:75–81.
8. Galeriu D, Oncescu M. Enviromental radioactivity of 1987 in Romania. Central Inst. of Physics, 1988.
9. Karakelle B, Öztürk N, Köse A, Varinlio?brevelu A, Erkol AY, Yilmaz F. Natural radioactivity in soil samples of Kocaeli basin, Turkey. J Radioanal Nucl Chem. 2002;254(3):649–51.
10. Xiao T, Zhao Z. The investigation of enviromental radioactivity background around a pulsed reactor. Nucl Power Eng. 1990;11(3):77–9.
11. VandenBygaart AJ, Protz R. Gamma radioactivity in podzolic soils of Northern Ontario, Canada. J Environ Radioact. 1999;42(1):51–64.
12. Schauble EA, Ghosh P, Eiler JM. Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta. 2006;70(10):2510–29.
13. Femandes EAN. Enviromental monitoring in the uranium mining and milling facility at pocos de caldas. Nucl Phys Prot. 1995;86.
14. Rezende SC de. Valorização da casca do pinhão, um subproduto da semente de Araucaria angustifolia, para produção de materiais poliméricos. Vol. 1, The British Journal of Psychiatry. Instituto Politécnico de Bragança; 2016.
15. Tavares Bastos Gama TMM, Masson ML, Haracemiv SMC, Zanette F, Córdova KRV. A influência de tratamentos térmicos no teor de amido, colorimetria e microscopia de pinhão nativo (araucaria angustifólia) e pinhão proveniente de polinização controlada. Rev Bras Tecnol Agroindustrial [Internet]. 2010 Dec 17 [cited 2018 Dec 14];4(2). Available from: https://periodicos.utfpr.edu.br/rbta/article/view/592
16. Silva LACS, Modolo DM, Martinez P, Piero EA di, Bigide P, Arthur V, et al. Effects of gamma radiation and storage on cooked pine seed (Araucaria angustifollia), 2011;
17. Zandavalli RB, Dillenburg LR, de Souza PVD. Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl Soil Ecol. 2004;25(3):245–55.
18. Leite DM da C. Avaliação nutricional da semente do Pinheiro-do-Paraná (Araucaria angustifolia). 2007;
19. Oubari official Website [Internet]. 2015 [cited 2019 Sep 15]. Available from: https://www.ppmac.org/content/pinhão-araucária
20. Balbinot R, Garzel JCL, Weber KS, Ribeiro AB. Tendências de consumo e preço de comercialização do pinhão (semente da Araucaria angustifolia (Bert.) O. Ktze.), no estado do Paraná. Ambiência, 2008;
21. Gama TMMTB. Estudo comparativo dos aspectos físico-químicos do pinhao nativo e do pinhao proveniente de processos de polinizaçao controlada de Araucaria angustifolia e da influencia do tratamento térmico, 2013.
22. Instituto Brasileiro de Geografia e Estatística. Censo I. Available from: http://www.censo2010. ibge.gov.br/
23. Balbinot R, Carlos J, Garzel L, Weber KS, Ribeiro AB. Trends of consumption and commercialization price of the Brazilian-pine nut-seed of Araucaria angustifolia (Bert.) O. Ktze., in the state of Parana [Internet]. [cited 2018 Dec 13]. Available from: https://revistas.unicentro.br/index.php/ambiencia/article/viewFile/147/165
24. Maathuis FJM, Sanders D. Mechanisms of potassium absorption by higher plant roots. Physiol Plant. 1996;96(1):158–68.
25. Johansen C, Edwards DG, Loneragan JF. Potassium fluxes during potassium absorption by intact barley plants of increasing potassium content. Plant Physiol. 1970;45(5):601–3.
26. Overstreet R, Jacobson L, Handley R. The effect of calcium on the absorption of potassium by barley roots. Plant Physiol. 1952;27(3):583.
27. Jayasinghe C, Pinnawala UC, Rathnayaka T, Waduge V. Annual committed effective dosage from natural radionuclides by ingestion of local food growing in mineral mining area, Sri Lanka. Environ Geochem Health. 2019;1–10.

Downloads

Published

2019-12-30

Issue

Section

Original Article

How to Cite

1.
Study of Araucaria angustifolia nuts by Gamma Spectrometry and X-Ray Fluorescence. Rev. Soc. cient. Py. [Internet]. 2019 Dec. 30 [cited 2025 Oct. 27];24(2):262-73. Available from: https://sociedadcientifica.org.py/ojs/index.php/rscpy/article/view/97

Similar Articles

You may also start an advanced similarity search for this article.