Solution enrichment using concentration gradients and relaxation times control: A mathematical model that takes into account cross-diffusion effects
Keywords:
mathematical models, mass transport processes, solution enrichment, perturbation theory, cross diffusion effects, systems of partial differential equations, modal analysisAbstract
Mathematical models are used to investigate mass transport processes in a solution of many components. The solution is in a chamber limited by two semipermeable barriers, proximal and distal. Through these barriers, a constant flow of solvent is imposed, which drags the solutes towards the distal barrier and produces diffusive counter flows. An extraction region adjacent to the distal barrier is defined and an inequality is established, related to the temporal behavior of the number of moles of the solutes in the extraction region, such that if it is met, it ensures that the relative enrichment function presents a transient phase with an overshoot relative to its final stationary value. Taking into due account cross-diffusion effects, two mathematical models of convection-diffusion processes are constructed: a three-dimensional model and a one-dimensional global model. The transport equations are linearized and solved in the framework of both models. The solutions of the mass transport equations are simplified by a procedure of regular perturbations when the cross effects are weak. Based on the solutions of the equations of both mathematical models, the conditions which ensures that an extraction at an appropriately selected moment of the transient improves the relative enrichment with respect to its steady state value are investigated.
Metrics
Downloads
References
2. Suárez Antola R, Bernasconi G, Bertolotti A. Simulación de un proceso de enriquecimiento de soluciones mediante una cámara de convección difusión. Primera Parte: Modelado y simulación a partir de la solución analítica de las ecuaciones de campo. Montevideo: DINATEN; 1990. doi: 10.13140/2.1.1131.1046
3. Suárez Antola R, Artucio G. Simulación de un proceso de enriquecimiento de soluciones mediante una cámara de convección difusión. Segunda Parte: Simulación a partir de la solución numérica de las ecuaciones de campo. Montevideo: DINATEN; 1990. doi: 10.13140/RG.2.2.16876.87689
4. Suárez Antola R. La energía nuclear: aspectos científicos, técnicos y sociales de la conversión núcleo-eléctrica. Montevideo; 2009. doi: 10.13140/2.1.1851.9049
5. Slattery J. Advanced transport phenomena. New York: Cambridge University Press; 1999.
6. Bird RB, Stewart W, Lightfoot E. Transport Phenomena. New York: Wiley; 2007.
7. Fitts D. Nonequilibrium Thermodynamics. New York: Mc Graw-Hill; 1962.
8. Hooyman G. Thermodynamics of diffusion in multicomponent systems. Physica. 1956;22:751-759.
9. Hirschfelder JO,Curtiss CF, Bird RB. Molecular Theory of Gases and Liquids. New York: Wiley; 1964.
10. Mialdun A, Sechenyh V, Legros J, Ortiz de Zárate J, Shevtsova V. Investigation of Fickian diffusion in the ternary mixture of 1,2,3,4-tetrahydronaphtalene, isobutylbenzene, and dodecane. The Journal of Chemical Physics. 2013;139(104):1-16.
11. Wambui-Mutoru J, Firoozabadi A. Form of multicomponent Fickian diffusion coefficients matrix, Journal of Chemical Thermodynamics. 2011;43:1192-1203.
12. Toor H. Solution of the linearized equations of multicomponent mass transfer: I. A. I. Ch. E. Journal 1964;10(4):448-455.
13. Taylor R. Solutions of the linearized equations of multicomponent, mass transfer, Ind. Eng. Chem. Fundam. 1982;21:407-413.
14. Cullinan H., Analysis of the flux equations of multicomponent diffusion, I&EC Fundamentals. 1965; 4(2):133-139.
15. Kirkaldy J, Weichert D, Ul-Haq Z. Diffusion in multicomponent metallic systems VI. Canadian Journal of Physics. 1963;41:2166-2172.
16. Aris R. Mathematical modeling techniques. New York: Dover, 1994.
17. Varma A, Morbidelli M. Mathematical methods in chemical engineering. New York: Oxford University
Press; 1997.
18. Aris R. O the dispersion of a solute in a fluid flowing through a tube, Proceedings of the Royal Society (London), Serie A. 1956;235:67-77.
19. Taylor G. Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society (London), Serie A. 1953;219:186-203.
20. Datta R, Vilekar S. The continuum mechanical theory of multicomponent diffusion, Chemical Engineering Science. 2010;65:5976-5989.
21.Demirel Y, Sandler, S. Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport. International Journal of Heat and Mass Transfer. 2001;44:2439-2451.
22.- Zauderer E. Partial Differential Equations of Applied Mathematics. New York: Wiley; 2006.
23. Stalgold I, Holst M. Green’s functions and boundary value problems. New York: Wiley; 2011.
24. Goertzel G, Tralli N. Some mathematical methods of Physics. New York: Mc Graw-Hill; 1960.
Downloads
Published
Issue
Section
License
El/los autores autorizan a la Revista de la Sociedad Científica del Paraguay a publicar y difundir el articulo del cual son autores, por los medios que considere apropiado.