Trichoderma como agente biocontrolador- en foco

Autores/as

DOI:

https://doi.org/10.32480/rscp.2024.29.1.137

Palabras clave:

biocontrol, endófito, mecanismo, sostenible

Resumen

Trichoderma, un género de hongos filamentosos es ampliamente utilizado en la agricultura debido a sus propiedades y usos diversos, destacando su habilidad para funcionar como un agente biocontrolador contra diversos fitopatógenos. El éxito de Trichoderma se basa en múltiples mecanismos de acción, que incluyen antibiosis, micoparasitismo, competencia por espacio y nutrientes, producción de enzimas y metabolitos secundarios con actividad antimicrobiana y la estimulación de la respuesta de defensa de las plantas ante los patógenos. Esta mini revisión se centra en los mecanismos de acción de Trichoderma como biocontrolador y sus potencialidades para el uso en la agricultura.  Es un género de hongos filamentosos con capacidad para inhibir el crecimiento de patógenos, estimular el crecimiento de las plantas y mejorar la calidad del suelo lo convierten en un recurso valioso para los agricultores. El conocimiento de estos mecanismos puede ayudar a mejorar aún más su uso en la agricultura y promover prácticas agrícolas sostenibles.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, et al. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front Plant Sci. 2018 Jun 5;9:743.

Kubheka BP, Ziena LW, Kubheka BP, Ziena LW. Trichoderma: A Biofertilizer and a Bio-Fungicide for Sustainable Crop Production. Trichoderma - Technol Uses [Internet]. 2022 Feb 24 [cited 2023 Apr 10]; Available from: https://www.intechopen.com/chapters/80375

Shahriar SA, Islam MN, Chun CNW, Kaur P, Rahim MA, Islam MM, et al. Microbial Metabolomics Interaction and Ecological Challenges of Trichoderma Species as Biocontrol Inoculant in Crop Rhizosphere. Agron 2022, Vol 12, Page 900 [Internet]. 2022 Apr 8 [cited 2023 Apr 10];12(4):900. Available from: https://www.mdpi.com/2073-4395/12/4/900/htm

Poveda J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol Control. 2021 Aug 1;159:104634.

Nafaa M, Rizk SM, Aly Taga, Rashed Mas, Abd El-Moneim D, Ben Bacha A, et al. Screening and Identification of the Rhizosphere Fungal Communities Associated with Land Reclamation in Egypt. Agric [Internet]. 2023 Jan 1 [cited 2023 Apr 10];13(1):215. Available from: https://www.mdpi.com/2077-0472/13/1/215/htm

Ferreira F V., Musumeci MA. Trichoderma as biological control agent: scope and prospects to improve efficacy. World J Microbiol Biotechnol [Internet]. 2021;37(5):1–17. Available from: https://doi.org/10.1007/s11274-021-03058-7

Mukhopadhyay R, Kumar D. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control [Internet]. 2020 Dec 1 [cited 2023 Apr 11];30(1):1–8. Available from: https://ejbpc.springeropen.com/articles/10.1186/s41938-020-00333-x

Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda M del C, Fadiji AE, et al. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants 2023, Vol 12, Page 432 [Internet]. 2023 Jan 17 [cited 2023 Apr 10];12(3):432. Available from: https://www.mdpi.com/2223-7747/12/3/432/htm

Siddiquee S. Practical Handbook of the Biology and Molecular Diversity of Trichoderma Species from Tropical Regions. 2017 [cited 2023 Apr 11]; Available from: http://link.springer.com/10.1007/978-3-319-64946-7

Bissett J. A revision of the genus Trichoderma. II. Infrageneric classification. https://doi.org/101139/b91-297 [Internet]. 2011 Nov 1 [cited 2023 Apr 11];69(11):2357–72. Available from: https://cdnsciencepub.com/doi/10.1139/b91-297

Steyaert JM, Weld RJ, Mendoza-Mendoza A, Stewart A. Reproduction without sex: Conidiation in the filamentous fungus Trichoderma. Microbiology. 2010;156(10):2887–900.

Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol. 2022;

Manzar N, Kashyap AS, Goutam RS, Rajawat MVS, Sharma PK, Sharma SK, et al. Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential. Sustain. 2022;14(19):1–32.

Dou K, Lu Z, Wu Q, Ni M, Yu C, Wang M, et al. MIST: A multilocus identification system for Trichoderma. Appl Environ Microbiol. 2020;86(18).

Olowe OM, Nicola L, Asemoloye MD, Akanmu AO, Babalola OO. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiol Res [Internet]. 2022;257(January):126978. Available from: https://doi.org/10.1016/j.micres.2022.126978

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species - Opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2(1):43–56.

Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, et al. Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol. 1999;26(2):131–40.

Mukherjee PK, Nautiyal CS, Mukhopadhyay AN. Molecular Mechanisms of Biocontrol by Trichoderma spp. 2008 [cited 2023 Apr 11];243–62. Available from: https://link.springer.com/chapter/10.1007/978-3-540-75575-3_10

Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci. 2019 Jul 9;10:845.

Mukherjee PK, Mendoza-Mendoza A, Zeilinger S, Horwitz BA. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biol Rev. 2022 Mar 1;39:15–33.

Aro N, Ilmén M, Saloheimo A, Penttilä M. ACEI of Trichoderma reesei Is a Repressor of Cellulase and Xylanase Expression. Appl Environ Microbiol [Internet]. 2003 Jan 1 [cited 2023 Apr 14];69(1):56. Available from: /pmc/articles/PMC152388/

Elena Cardoza R, Hermosa R, Antonio Vizcaino J, Sanz L, Cardoza R-E, Hermosa M-R, et al. Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. Microorg Ind Enzym biocontrol [Internet]. 2005;1(January):1–22. Available from: https://www.researchgate.net/publication/284802240

Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, et al. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and Ethylene Insensitive 2 functioning. New Phytol. 2016;209(4):1496–512.

Lin YR, Lo CT, Liu SY, Peng KC. Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem [Internet]. 2012 Mar 7 [cited 2023 Apr 14];60(9):2123–8. Available from: https://pubs.acs.org/doi/abs/10.1021/jf202773y

Monfil VO, Casas-Flores S. Molecular Mechanisms of Biocontrol in Trichoderma spp. and Their Applications in Agriculture. Biotechnol Biol Trichoderma. 2014 Jan 1;429–53.

Palmieri D, Ianiri G, Del Grosso C, Barone G, De Curtis F, Castoria R, et al. Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Hortic 2022, Vol 8, Page 577 [Internet]. 2022 Jun 25 [cited 2023 Apr 17];8(7):577. Available from: https://www.mdpi.com/2311-7524/8/7/577/htm

J B Neilands and, Leong SA. Siderophores in Relation to Plant Growth and Disease. https://doi.org/101146/annurev.pp37060186001155 [Internet]. 2003 Nov 28 [cited 2023 Apr 17];37(1):187–208. Available from: https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.37.060186.001155

Hemming BC. Microbial-iron interactions in the plant rhizosphere. an overview. J Plant Nutr. 1986;9(3–7):505–21.

Biocontrol mechanisms of Trichoderma strains - PubMed [Internet]. [cited 2023 Apr 17]. Available from: https://pubmed.ncbi.nlm.nih.gov/15666245/

Ty?kiewicz R, Nowak A, Ozimek E, Jaroszuk-?cise? J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci [Internet]. 2022 Feb 1 [cited 2023 Apr 17];23(4):2329. Available from: https://www.mdpi.com/1422-0067/23/4/2329/htm

Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol. 2006;7(1):1–16.

Harman GE, Herrera-Estrella AH, Horwitz BA, Lorito M. Special issue: Trichoderma--from basic Biology to Biotechnology. Microbiology [Internet]. 2012 Jan [cited 2023 Apr 17];158(Pt 1):1–2. Available from: https://pubmed.ncbi.nlm.nih.gov/22210803/

Atanasova L, Crom S Le, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, et al. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics [Internet]. 2013 Feb 22 [cited 2023 Apr 17];14(1):1–15. Available from: https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-14-121

Ding Z, Wang X, Kong FD, Huang HM, Zhao YN, Liu M, et al. Overexpression of Global Regulator Talae1 Leads to the Discovery of New Antifungal Polyketides From Endophytic Fungus Trichoderma afroharzianum. Front Microbiol. 2020 Dec 23;11:3351.

Ribosomal DNA sequence analysis reveals new species groupings in the genus colletotrichum [Internet]. [cited 2023 Apr 17]. Available from: https://agris.fao.org/agris-search/search.do?recordID=US201301490293

Zhang P, Li X, Wang BG. Secondary Metabolites from the Marine Algal-Derived Endophytic Fungi: Chemical Diversity and Biological Activity. Planta Med [Internet]. 2016 Jun 1 [cited 2023 Apr 17];82(9–10):832–42. Available from: https://pubmed.ncbi.nlm.nih.gov/27220083/

Alfiky A, Weisskopf L. Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications. J Fungi 2021, Vol 7, Page 61 [Internet]. 2021 Jan 18 [cited 2023 Apr 17];7(1):61. Available from: https://www.mdpi.com/2309-608X/7/1/61/htm

Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci. 2020 Dec 1;65(2):168–78.

de França SKS, Cardoso AF, Lustosa DC, Ramos EMLS, de Filippi MCC, da Silva GB. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agron Sustain Dev. 2015;35(1):317–24.

Naeimi S, Okhovvat S, Javan-Nikkhah M, Vágvölgyi C, Khosravi V, Kredics L. Biological Control of Rhizoctonia solani AG1-1A, the Causal Agent of Rice Sheath Blight with Trichoderma Strains. Phytopathol Mediterr [Internet]. 2010 [cited 2023 Apr 17];49(3):287–300. Available from: https://oajournals.fupress.net/index.php/pm/article/view/5372

Saravanakumar K, Li Y, Yu C, Wang QQ, Wang M, Sun J, et al. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep [Internet]. 2017;7(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-017-01680-w

HE A le, LIU J, WANG X hua, ZHANG Q guo, SONG W, CHEN J. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J Integr Agric. 2019;18(3):599–606.

Sánchez-Montesinos B, Diánez F, Moreno-Gavira A, Gea FJ, Santos M. Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant trichoderma isolates under salinity stress. Int J Environ Res Public Health. 2019;16(11):1–11.

Tchameni SN, Cotârle M, Ghinea IO, Ampere M, Bedine B. Involvement of lytic enzymes and secondary metabolites produced by Trichoderma spp . in the biological control of Pythium myriotylum. Int Microbiol. 2019;

Elshahawy IE, El-Mohamedy RS. Biological control of Pythium damping-off and root-rot diseases of tomato using Trichoderma isolates employed alone or in combination. J Plant Pathol. 2019;101(3):597–608.

Zhang C, Wang W, Xue M, Liu Z, Zhang Q, Hou J, et al. The combination of a biocontrol agent trichoderma asperellum sc012 and hymexazol reduces the effective fungicide dose to control fusarium wilt in cowpea. J Fungi. 2021;7(9).

Awad-Allah EFA, Shams AHM, Helaly AA, Ragheb EIM. Effective Applications of Trichoderma spp. as Biofertilizers and Biocontrol Agents Mitigate Tomato Fusarium Wilt Disease. Agric. 2022;12(11).

Díaz-Gutiérrez C, Arroyave C, Llugany M, Poschenrieder C, Martos S, Peláez C. Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol Control. 2021;155(September 2020).

Risoli S, Cotrozzi L, Sarrocco S, Nuzzaci M, Pellegrini E, Vitti A. Trichoderma-Induced Resistance to Botrytis cinerea in Solanum Species: A Meta-Analysis. Plants. 2022;11(2).

Aoki Y, Haga S, Suzuki S. Direct antagonistic activity of chitinase produced by Trichoderma sp. SANA20 as biological control agent for grey mould caused by Botrytis cinerea . Cogent Biol [Internet]. 2020;6(1):1747903. Available from: https://doi.org/10.1080/23312025.2020.1747903

Wu X, Lyu Y, Ren H, Zhou F, Zhang X, Zhao X, et al. Degradation of oxalic acid by Trichoderma afroharzianum and its correlation with cell wall degrading enzymes in antagonizing Botrytis cinerea. J Appl Microbiol. 2022;133(5):2680–93.

Li TT, Zhang J Di, Tang JQ, Liu ZC, Li YQ, Chen J, et al. Combined use of trichoderma atroviride CCTCCSBW0199 and brassinolide to control botrytis cinerea infection in Tomato. Plant Dis. 2020;104(5):1298–304.

A.P. S, Thankappan S, G. K, Uthandi S. Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii and Macrophomina phaseolina. Microbiol Res [Internet]. 2020;236(December 2019):126436. Available from: https://doi.org/10.1016/j.micres.2020.126436

Yadav M, Dubey MK, Upadhyay RS. Systemic resistance in chilli pepper against anthracnose (Caused by colletotrichum truncatum) induced by trichoderma harzianum, trichoderma asperellum and paenibacillus dendritiformis. J Fungi. 2021;7(4).

Grano-Maldonado MI, Ramos-Payan R, Rivera-Chaparro F, Aguilar-Medina M, Romero-Quintana JG, Rodríguez-Santiago A, et al. First molecular characterization of colletotrichum sp. And fusarium sp. isolated from mangrove in mexico and the antagonist effect of trichoderma harzianum as an effective biocontrol agent. Plant Pathol J. 2021;37(5):465–75.

Yadav M, Divyanshu K, Dubey MK, Rai A, Kumar S, Tripathi YN, et al. Plant growth promotion and differential expression of defense genes in chilli pepper against Colletotrichum truncatum induced by Trichoderma asperellum and T. harzianum. BMC Microbiol [Internet]. 2023;23(1):1–17. Available from: https://doi.org/10.1186/s12866-023-02789-x

Drahansky M, Paridah M., Moradbak A, Mohamed A., Owolabi F abdulwahab taiwo, Asniza M, et al. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech [Internet]. 2016;i(tourism):13. Available from: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics

Silva LG, Camargo RC, Mascarin GM, Nunes PS de O, Dunlap C, Bettiol W. Dual functionality of Trichoderma: Biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants. Front Plant Sci. 2022;13(October):1–14.

Safari Motlagh MR, Abolghasemi M. The effect of Trichoderma spp. isolates on some morphological traits of canola inoculated with Sclerotinia sclerotiorum and evaluation of their efficacy in biological control of pathogen. J Saudi Soc Agric Sci [Internet]. 2022;21(4):217–31. Available from: https://doi.org/10.1016/j.jssas.2021.08.004

Yan L, Khan RAA. Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus, Trichoderma harzianum. Egypt J Biol Pest Control. 2021;31(1).

Mohamed BFF, Sallam NMA, Alamri SAM, Abo-Elyousr KAM, Mostafa YS, Hashem M. Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egypt J Biol Pest Control. 2020;30(1).

Chien YC, Huang CH. Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. Eur J Plant Pathol. 2020;156(4):995–1003.

Saksirirat W, Chareerak P, Bunyatrachata W. Asian Journal of Food and Agro-Industry Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and gray leaf spot in tomatoes. As J Food Ag-Ind [Internet]. 2009;9:99–104. Available from: www.ajofai.info

Fan H, Yao M, Wang H, Zhao D, Zhu X, Wang Y, et al. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiol. 2020;20(1):1–11.

Singh S, Balodi R, Meena PN, Singhal S. Biocontrol activity of Trichoderma harzianum, Bacillus subtilis and Pseudomonas fluorescens against Meloidogyne incognita, Fusarium oxysporum and Rhizoctonia solani. Indian Phytopathol [Internet]. 2021;(0123456789). Available from: https://doi.org/10.1007/s42360-021-00368-6

Márquez-Dávila K, Arévalo-López L, Gonzáles R, Vega L, Meza M. Trichoderma and Clonostachys as biocontrol agents against Meloidogyne incognita in sacha inchi. Pesqui Agropecu Trop. 2020;50:1–10.

Mukhtar T, Tariq-Khan M, Aslam MN. Bioefficacy of Trichoderma Species Against Javanese Root-Knot Nematode, Meloidogyne javanica, in Green Gram. Gesunde Pflanz. 2021;73(3):265–72.

Hemeda NF, Deeb E. Evaluation of biological Control potential for different Trichoderma strains against Root-Knot Nematode Meloidogyne javanica. J Adv Lab Res Biol E-ISSN [Internet]. 2019;10(1):16–22. Available from: https://e-journal.sospublication.co.in

Lubian C, Kuhn OJ, Portz RL, Agustinha AM, ... Biological control of Meloidogyne javanica in bean plants by Hohenbuehelia spp. and Trichoderma koningiopsis. Arq do Inst … [Internet]. 2021;1–9. Available from: https://www.scielo.br/j/aib/a/ZWghn3nmhjVV7sXmtjvxNqz/abstract/?lang=en%0Ahttps://www.scielo.br/j/aib/a/ZWghn3nmhjVV7sXmtjvxNqz/?lang=en

Zhang S, Gan Y, Liu J, Zhou J, Xu B. Optimization of the Fermentation Media and Parameters for the Bio-control Potential of Trichoderma longibrachiatum T6 Against Nematodes. Front Microbiol. 2020;11(September):1–12.

Ghosh SK, Pal S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ Monit Assess. 2016;188(1):1–7.

Rodríguez-González A, Casquero PA, Cardoza RE, Gutiérrez S. Effect of trichodiene synthase encoding gene expression in Trichoderma strains on their effectiveness in the control of Acanthoscelides obtectus. J Stored Prod Res. 2019;83:275–80.

Coppola M, Cascone P, Di Lelio I, Woo SL, Lorito M, Rao R, et al. Trichoderma atroviride p1 colonization of tomato plants enhances both direct and indirect defense barriers against insects. Front Physiol. 2019;10(July):1–12.

SENAVE. Registros de Productos [Internet]. Sitio Web. 2023 [cited 2023 May 5]. Available from: http://secure.senave.gov.py:8443/registros/servlet/com.consultaregistros2.prod_agro2

Ballagro Agro Tecnologia Ltda. ECOTRICH WP [Internet]. Ficha Técnica. San Pablo, Brasil: Ballagro Agro Tecnologia Ltda.; 2019. Available from: file:///C:/Users/Andrea/Downloads/FISPQ Ecotrich.pdf

Koppert Products. Trichodermil [Internet]. Ficha Técnica. 2023 [cited 2023 May 5]. Available from: https://www.koppert.com.py/trichodermil/

Simbiose. StimuControl [Internet]. Sitio Web. 2023 [cited 2023 May 5]. Available from: https://simbiose-agro.com.br/product/view/stimucontrol#

Rizobacter Argentina S.A. RIZODERMA [Internet]. Buenos Aires, Argentina: Rizobacter Argentina S.A.; 2018. p. 1–6. Available from: https://www.syngenta.com.ar/sites/g/files/kgtney396/files/media/document/2020/04/21/marbete_rizoderma.pdf

Lallemand Plant Care. LALSTOP QUALITY WG [Internet]. Sitio Web. 2023. Available from: https://www.lallemandplantcare.com/en/usa/products/product-details/lalstop-g46-wg/

Agro Advance Technology S.A. HULKGREEN [Internet]. Buenos Aires (Argentina): Agro Advance Technology S.A; 2023. Available from: https://www.agrofy.com.ar/biocontrolador-hulkgreenr.html

Aqua Free. AQ TRC [Internet]. Nueva Italia, Paraguay: Aqua Free; 2023. p. 1. Available from: https://www.af.com.py/productos/aq-trc

Descargas

Publicado

01.06.2024

Cómo citar

1.
Marchuk Larrea CN, Benitez Rodas GA, Sandoval-Espinola WJ, Arrúa Alvarenga PD, López-Nicora HD, Enciso Maldonado GA, Quintana SA, Fernández Ríos D, Arrúa AA. Trichoderma como agente biocontrolador- en foco. Rev. Soc. cient. Py. [Internet]. 1 de junio de 2024 [citado 14 de diciembre de 2024];29(1):137-71. Disponible en: https://sociedadcientifica.org.py/ojs/index.php/rscpy/article/view/331

Número

Sección

Revisión