Interaction between physical and numerical modeling for the design of hydraulic works and validation of CFD simulations
DOI:
https://doi.org/10.32480/rscp.2018-23-2.227-240Keywords:
physical model, mathematical models, hydro combined power plant, optimizationAbstract
The physical models constitute a powerful tool for the design and optimization of complex hydraulic works on operation and implementation. In the project stage it allows to visualize the operation of the future work with the expected design conditions, and others more unfavorable conditions for it stability or good functioning, because we can controlled certain parameters that makes it possible to model scenarios that in prototype has a low probability of occurrence such as a probable maximum flood (PMF) or other that we don´t want to happen, such as damages or collapse of the structure. For the evaluations of existing works with design or functioning problems the physical models allow us to find optimized solutions.
Currently due to the advancement of technology, we have access to high-performance numerical models, which allow us to perform the same analyzes as in physical models, but without large facilities. Due to the complexity of hydraulic phenomena, its numerical representation requires formulations that must be validated with experimental or prototype data.
The objective of this work is to demonstrate the utility of a physical model for the design and optimization of a hydro combined power plant, and its use for the validation of CFD simulations.
Metrics
Downloads
References
2. Silva Freire AP, Menut PM, Su J. Turbulencia. Rio de Janeiro, Brasil: Associacao Brasileira de Ciencias Mecánicas; 2002.
3. Lee OS, Hong HS. Reproducing Field Measurements Using Scaled-Down Hydraulic Model Studies in a Laboratory. Advances in Civil Engineering. 2018. doi: https://doi.org/10.1155/2018/9091506
4. Angulo M, Liscia S, Lopez A, Lucino, C. Experimental Validation of a low-head turbine intake designed by CFD following Fisher and Franke guidelines. Anales del Congreso 27th IAHR Symposium Hydraulic Machinery and Systems. Montreal; 09/ 2014.
5. Duró G, De Dios M, López A. Physical modeling and cfd comparison: case study of a hydro-combined power station in spillway mode. Annals 4th International Junior Researcher and Engineer Workshop on Hydraulic Structures. Logan, Utah, 06/ 2012.
6. Aydin MC, Ozturk M. Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillways aerators. Canad. J Civil Eng. 2009;36(5):826-836.
7. Liscia S, Angulo M, Ruiz Díaz A, Lugo MV. Estudio de una Obra de Desvío mediante Modelación Matemática. Anales XXV Congreso Latinoamericano de Hidráulica IAHR, AIIH San José, Costa Rica; 2012.
8. Liscia S, Angulo M, Lugo M. V. Modelación física y matemática de una obra de derivación. Anales XXIII Congreso Latinoamericano de Hidráulica. Punta del Este, Uruguay; 2010.
9. Liscia S, Angulo MA, De Dios M, Del Blanco M. Modelación matemática y física de un vertedero modificado. Anales XXIII Congreso Latinoamericano de Hidráulica. Punta del Este; 2010.
10. Vallarino E. Tratado Básico de Presas: Aliviaderos. Construcción y Explotación de Presas. Tomo II. Madrid: Servicio de Publicaciones de la Escuela de Ingenieros de Caminos de Madrid; 1998.
11. Flow Science Inc. Flow 3D. User Manual. Vesion 9.3. 2008. Disponible en https://www.flow3d.com/
Downloads
Published
Issue
Section
License
El/los autores autorizan a la Revista de la Sociedad Científica del Paraguay a publicar y difundir el articulo del cual son autores, por los medios que considere apropiado.