Impact Diamonds in an Extravagant Metal Piece Found in Paraguay: Published Raman spectra revisited
DOI:
https://doi.org/10.32480/rscp.2024.29.1.22Keywords:
largest lonsdaleitic diamond-bearing iron meteorite, ParaguayAbstract
Very probable lonsdaleitic diamond bearing a pitcher-shaped metal piece weighing approximately 303 kg. published Raman spectra we revisited. The Raman spectra of diamond characteristically show 3 intense bands: I- D-band with shifted peaks wavenumber (1294 to 1330 cm-1) I.e., diamond crystals that have lonsdaleitic component nature. II- G-Band (with peaks wavenumber in 1583 to 1588 cm-1), I.e., very probable diamond crystals formation by a shock-induced transformation of graphite present in the metal piece. III- iron-meteorite band (with peaks wavenumber in 217, 284, and 402 cm-1) I.e., they were formed in an iron meteorite environment. IV- between D-band and G-band identify the 4th band, which is not very intense (peaks wavenumber in 1428 to 1460 cm-1), which is now in typical of low-quality diamonds or disordered diamonds. In the diamond, we fain that FWHM values (39 to 162 cm-1) are large to very large like is found in lonsdaleitic diamonds. FWHM values project to the diamonds between 10 to probable 100% of lonsdaleitic component. Shifted D-peak wavenumber and FWHM values suggest the lonsdaleitic diamond's formation in conditions of super high pressure and high temperatures (Formation temperature 1068°-1541°C) that would have been given by a collision between fireballs in space. So, the METCCH joins to the rare diamonds-bearing iron meteorites so far recorded yet; and could be seen as the largest diamond-bearing iron meteorite ever recorded.
Metrics
Downloads
References
Németh P., Lancaster H.J., Salzmann C.G., McColl K., Fogarassy Z., Garvie L.A.J., Illés L., Pécz B., Murri M., Corà F., Smith R.L., Mezouar M., Howard C.A., McMillan P.F. Shock-formed carbon materials with intergrown sp3- and sp2-bonded nanostructured units. Proc Natl Acad Sci USA 2022; 26:119 (30).
Ovsyuk N.N., Goryainov S.V., Likhacheva A.Y. Raman scattering of impact diamonds, Diamond and Related Materials 2019; Volume 91: 207-212.
Jones A.P., McMillan P.F., Salzmann Sh.G., Alvaro M., Nestola F., Prencipe M., Dobson D., Hazael R., Moore M. Structural characterization of natural diamond shocked to 60 GPa; implications for Earth and planetary systems. Lithos 2016; 265, 214–221.
Murri M., Smith R.L., McColl K., Hart M., Alvaro M., Jones A.P., Németh P., Salzmann Chr. G., Corà F., Domeneghetti M.C., Nestola F., Sobolev N.V., Vishnevsky S.A. Logvinova A.M., McMillan P.F. Quantifying hexagonal stacking in Diamond. Scientific Reports 2019; 9, 10334.
Presser J.L.B., Monteiro M., Maldonado A. Impact Diamonds in an Extravagant Metal Piece Found in Paraguay. Historia Natural, Tercera Serie 2019; Volumen 10(2) 2020/5-15.
Yelisseyev, A.P.; Afanasyev, V.P.; Gromilov, S.A. 2018: Yakutites from the Popigai meteorite crater. Diamond and Related Materials, Volume 89, Pages 10-17.
Zaitsev A.M. Optical properties of diamond: A data handbook. Springer Science and Business Media 2013; Pp 519.
Green, B.L Collins, A.T. and Breeding, Ch.M. (2022). Diamond Spectroscopy, Defect Centers, Color, and Treatments. Reviews in Mineralogy & Geochemistry Vol. 88 pp. 637–688.
Goryainov S.V., Likhacheva A.Y., Rashchenko S.V., Shubin A.S., Afanas’ev V.P., Pokhilenko N.P.J. Raman identification of lonsdaleite in Popigai Impactites. J. Raman Spectrosc 2014; Wiley online library. com/journal/jrs.
Di Liscia E.J., Álvarez F., Burgos E., Halac E.B., Huck H., Reinoso M. Stress Analysis on Single-Crystal Diamonds by Raman Spectroscopy 3D Mapping. Materials Sciences and Applications 2013; 4, 191-197.
Presser, J.L.B.; Monteiro, M.; Maldonado, A. 2019: Impact Diamonds in an Extravagant Metal Piece Found in Paraguay. Historia Natural, Tercera Serie, Volumen 10 (2) 2020/5-15.
Presser J.L.B., Sikder, A. Raman Spectroscopic Analysis of Diamonds and his Mineral Inclusions from “Lamproites” in the Capiibary, San Pedro Dpto., Paraguay. Historia Natural 2022; Tercera Serie, Volumen 12(3) 2022/5-19.
Miyamoto M., Takase T., Mitsuda Y. Raman spectra of various diamonds. Mineral. J. 1993; 16, 246-257.
He H., Sekine T., Kobayashi T. Direct transformation of cubic diamond to hexagonal diamond. Appl. Phys. Lett. 2002; Vol. 81, No. 4: 610-612.
Enkovich P. V., Brazhkin V. V., Lyapin S. G., Novikov A. P., Kanda H., Stishov S. M. Raman Spectroscopy of Isotopically Pure (12C, 13C) and Isotopically Mixed (12.5C) Diamond Single Crystals at Ultrahigh Pressures. Journal of Experimental and Theoretical Physics 2016; Vol. 123, No. 3, 443–451.
Qiu W., Velisavljevic N., Baker P.A., Vohraa Y.K., Weir S.T. Isotopically pure 13C layer as a stress sensor in a diamond anvil cell. APPLIED PHYSICS LETTERS 2004; VOLUME 84, NUMBER 26.
Mildren R.P. Intrinsic Optical Properties of Diamond. In, Optical Engineering of Diamond, First Edition. Edited by Richard P. Mildren and James R. Rabeau. © 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 1-34.
Smith D.C., Godard G. UV and VIS Raman spectra of natural lonsdaleites: Towards a recognised standard. Spectrochimica Acta 2009; Part A 73: 428–435.
Chukanov N.V., Vigasina M.F. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. @ Springer Nature Switzerland AG. 2020; 1382 Pp.
Ross A.J., Steele A., Fries M.D., Kater L., Downes H., Jones A.P., Smith C.L., Jenniskens P.M., Zolensky M.E., Shaddad M.H. MicroRaman Spectroscopy of Diamond and Graphite in Almahata Sitta and Comparison with Other Ureilites. Meteoritics & Planetary Science 2011; 46: 364–78.
Cebik J.E. In Situ Raman Spectroscopy Study of the Nanodiamond-To-Carbon Onion Transformation During Thermal Annealing of Detonation Nanodiamond Powder. Ph.D. Thesis from Naval Postgraduate School 2012; 76 Pp.
Presser J.L.B., Sikder A. Lower mantle diamonds, the work notes II 2023; DOI: 10.13140/RG.2.2.20573.69608.
Ahmed F. Verformungs- und Schädigungsmechanismen in dünnen Diamantschichten auf duktilen Substraten. PHD these from Universität Erlangen-Nürnberg 2012; 200 Pp.
Connelly D.P., Presser J.L.B., Sikder M. LONSDALEITE IN MUSGRAVE PSEUDOTACHYLITES: THE PETROGRAPHIC EVIDENCES OF IMPACT. Conference: Geological Society of America (GSA), CONNECT 2022, 9-12 October, Denver, Colorado.
Mermoux N., Chang Sh., Girard H.G., Arnault J-C. Raman spectroscopy study of detonation nanodiamond, Diamond and Related Materials 2018; Volume 87, 248-260.
Cody G. D., Alexander C. M. O’D., Yabuta H., Kilcoyne A. L. D., Araki T., Ade H., Dera P., Fogel M., Militzer B., Mysen B. O. Organic Thermometry for Chondritic Parent Bodies. Earth and Planetary Science Letters 2008; 272: 446–55.
Christ O., Barbaro A., Brenker F.E., Nimis P., Novella D., Domeneghetti M.Ch., Nestola F. Shock degree and graphite geothermometry in ureilites NWA 6871 and NWA 3140. Meteoritics & Planetary Science 2022;1–18.
Barbaro A. Nestola F., Pittarello L., Ferriere L., Murri M., Litasov K. D., Christ O., Alvaro M., Domeneghetti M. C. Characterization of Carbon Phases in Yamato 74123 Ureilite to Constrain the Meteorite Shock History. American Mineralogist 2022; 107: 377–84.
Begunova S., Yakovlev G.A., Kamalov R.V., Pankrushina E.A., Grokhovsky V.I. Influence of Seymchan Meteorite Structure on the Synthesis of Carbon Nanotubes Physics, Technologies and Innovation (PTI-2019). 2019; 020204-1-020204-6.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Revista de la Sociedad Científica del Paraguay

This work is licensed under a Creative Commons Attribution 4.0 International License.
El/los autores autorizan a la Revista de la Sociedad Científica del Paraguay a publicar y difundir el articulo del cual son autores, por los medios que considere apropiado.