The medical importance of scorpionism in Paraguay: a review of the multisystemic failure associated with scorpion envenomation and contribution to its differential diagnosis

Authors

DOI:

https://doi.org/10.32480/rscp.2022.27.2.122

Keywords:

scorpionism, scorpions, Tityus, multiorgan failure, pancreatitis, acute respiratory distress syndrome, Paraguay, differential diagnosis

Abstract

Scorpionism, or the medical consequence of scorpion stings in humans, is a public health problem in urban and rural areas of Tropical America, including Paraguay, associated with poverty and the lack of access to specific antivenoms. Despite its prevalence, scorpionism in Paraguay has not been assessed before. The local distribution of toxic scorpion species that are endemic to Paraguay and shared with neighboring countries, and also the record of severe cases in children from the Central Department, demand a review of this pathology to enlighten health professionals and biomedical researchers on the subject. In this review, the current status of scorpionism in Paraguay is presented, along with the physiopathological alterations elicited by scorpion venoms on the various organ systems targeted by the toxins, and its differential diagnosis, with the intent to contribute with the adequate treatment of victims and the holistic understanding of this emerging neglected disease in the country.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

(1) Borges A, Rojas de Arias A. El Accidente por Escorpiones Tóxicos en el Paraguay: Mito y Realidad en el contexto de la Emergencia por Escorpionismo en el Sudeste de la América del Sur. Revista de la Sociedad Científica del Paraguay. 2019; 24: 27–35.

(2) Pimenta RJG, Brandão-Dias PFP, Leal HG, do Carmo AO, de Oliveira-Mendes BBR, Chávez-Olórtegui C, et al. Selected to survive and kill: Tityus serrulatus, the Brazilian yellow scorpion. PLoS One. 2019;14(4):1–10.

(3) SR Naseem, S Altamemi, I Ullah. Scorpion sting envenomation or anaphylaxis? Report of a child with overlapping cilinical picture following scorpion sting. Clin intensive care. 1999; 10(4): 146–146

(4) Khattabi A, Soulaymani-Bencheikh R, Achour s, Salmi LR. Classification of Clinical consequences of scorpion stings: Consensus development. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2011; 105(7):364–369.

(5) de Roodt R. Veneno de escorpiones (alacranes) y envenenamiento. Acta Bioquímica Clínica Latinoamericana. 2015; 49(1): 55–71.

(6) Hass A, Orduna T, Lloveras S, de Roodt A, Costa V, Garcia S. Guía de prevención, Diagnóstico, Tratamiento y Vigilancia Epidemiológica del Envenenamiento por escorpiones. Buenos Aires: Ministerio de Salud de la Nación. Programa Nacional de Prevención y Control de las Intoxicaciones; 2011.

(7) Klotz J, Klotz S, Pinnas J. Animal bites and stings with anaphylactic potential. The Journal of Emergency Medicine. 2009; 36(2):148–156.

(8) ABC Color. Proliferan los alacranes y hay preocupación por disponibilidad de antídotos. 19 de Febrero de 2020 (https://www.abc.com.py/nacionales/2020/02/19/proliferan-los-alacranes-y-no-hay-antidoto-en-paraguay/)

(9) ABC Color. Paraguay debe producir sus propios antídotos, sugiere especialista en toxicología. 29 de Diciembre de 2020 https://www.abc.com.py/nacionales/2020/12/29/paraguay-debe-producir-sus-propios-antidotos-dice-especialista-en-toxicologia/

(10) Guerrero DJ, Kochalka JA. Nuevos Registros y Revisión de Localidades de Buthidae. Boletín del Mus Nac Hist Nat del Paraguay. 2015;19(2):62–6.

(11) Martínez M. Los canales iónicos: la biología y patología. Arch Cardiol Mex. 2004;74:205–10.

(12) Needleman R, Neylan I, Erickson T. Potential environmental and ecological effects of global climate change on venomous terrestrial species in the wilderness. Wilderness & environmental medicine. 2018; 29(2):226–38.

(13) Borges A, Rojas de Arias A, de Almeida Lima S, Lomonte B, Díaz C, Chávez-Olórtegui C, et al. Genetic and toxinological divergence among populations of tityus trivittatus kraepelin, 1898 (scorpiones: buthidae) inhabiting paraguay and argentina. Plos Neglected Tropical Diseases. 2020; 14(12): e0008899.

(14) Dos Santos DS, Carvalho EL, de Lima JC, Breda RV, Oliveira RS, de Freitas TC, et al. Bothriurus bonariensis scorpion venom activates voltage-dependent sodium channels in insect and mammalian nervous systems. Chem Biol Interact 2016;258:1—9.

(15) MSPBS/DIGIES/DES Sub-Sistema de Información de Servicios de Salud Área Ambulatoria (SAA) Sistema de infromación en salud (HIS). CONSULTAS A CAUSA DE EFECTOS TÓXICOS DEL VENENO DE ESCORPIÓN (T63.2), POR GRUPOS DE EDAD, SEGÚN REGIONES SANITARIAS DE CONSULTA; 2021. Solicitud 39.680.

(16) Petricevich V. Scorpion venom and the inflammatory response. Mediators Inflamm. 2010;2010:903295.

(17) Martinez P, Andrade M, Bidau C. Potential effects of climate change on the risk of accidents with poisonous species of the genus tityus (scorpiones, buthidae) in argentina. Spatial and Spatio-temporal Epidemiology. 2018;25:67–72.

(18) Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F. Scorpion Venom Interactions with the Immune System. Springer Science. 2015; 88–104.

(19) Coaquira S, Condori A, Fuentes de la Barra P. Neurofisiologia de la conduccion nerviosa. Bol méd. Rev. Act. Clin. 2012; 27(1):1301-1305.

(20) Saldarriaga M, Otero P. Los escorpiones: aspectos ecológicos, biológicos y toxinológicos. MedUNAB. 2000; 3(7):17–23.

(21) Borges, A., Miranda, R., Patin?o HA. Los escorpiones y el escorpionismo en Panama?. Vol 1. Panamá: Universidad de Panama?; 2011.

(22) Bergillos, M. Rivas, M. Toxicología clínica. Lesiones por picaduras y mordeduras de animales. 1a ed. España. Bubok Publishing; 2013.

(23) Clot-Faybesse O, Guieu R, Rochat H, Devaux C. Toxicity during early development of the mouse nervous system of a scorpion neurotoxin active on sodium channels. Life Sci. 2000; 66(3):185–92.

(24) Escobar A, Gómez B. Barrera hematoencefálica. Neurobiología, implicaciones clínicas y efectos del estrés sobre su desarrollo. Rev Mex Neurocienc. 2008;9(5)(5):395–405.

(25) Pascual-Garvi J, González-Llanos F, Prieto-Arribas R, Cerdán S, Roda J. La barrera hematoencefálica: desarrollo de una estructura que permite la heterogeneidad funcional del sistema nervioso central. Rev Neurol. 2004; 38(06):565-581

(26) Fuenmayor F, Quiguantar R, Proaño X, González I. Las múltiples caras del edema agudo de pulmón: a propósito de dos casos clínicos. Rev MC. 2020; 28(1):25–35.

(27) Parma J, Palladino C. Envenenamiento por escorpión en la Argentina. Arch Argent Pediatr. 2010; 108(2):161–170.

(28) Sánchez P. La Saliva Como Fluido Diagnóstico. Educ Contin en el Lab clínico. 2012; 16(1):93–108.

(29) Granja V, Martínez R, Chico P. Epidemiología y cuadro clínico del alacranismo. Medigraphic. 1999; 8(5):135-138.

(30) Ortiz J, Fornet I, Palacio F. Fisiopatología del edema pulmonar. Implicaciones terapéuticas, cuidados respiratorios y tecnología aplicada. Cuid. Resp. 2008; 3(3):23-29.

(31) Fletcher PL, Fletcher MD, Weninger K, Anderson TE, Martin BM. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. J Biol Chem. 2010;285(10):7405–16.

(32) Lizarazo J. Fisiopatología de la pancreatitis aguda. Rev. Colomb. Gastroenterol. 2008; 23(2):187–191.

(33) Gaisano H, Gorelick F. New Insights into the Mechanisms of Pancreatitis. Gastroenterology. 2009; 136(7):2040–2044.

(34) Argote KA, Patiño DA, Chica VC. Picadura por escorpiones. Estado del arte. Perspectivas en Urgencias 2015; 1(4):198-208.

(35) Bravo MP, Zamora A, Mondragón Á. Disfunción autonómica debido a accidente escorpiónico: reporte de caso. Acta Medica Peruana 2017; 34(1):49–51.

(36) Monserrat J, Gómez A, Sosa M, Prieto A. Introducción al sistema inmune. Componentes celulares del sistema inmune innato. Medicine 2017; 12(24):1369–1378.

(37) Carrasco L. Citoquinas: de fieles aliadas a temibles enemigas. An. Real Acad Ciencias Vet Andalucía Orient 2011; 24(1):75–90.

(38) Zoccal KF, Bitencourt C da S, Secatto A, Sorgi CA, Bordon K de CF, Sampaio SV, et al. Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators. Toxicon 2011; 57(7–8):1101–1108.

(39) Zoccal K, Bitencourt C, Paula-Silva F, Sorgi C, De Castro K, Arantes E, et al. TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. Plos One. 2014; 9(2):1-11.

(40) Pucca M, Peigneur S, Cologna C, Cerni F, Zoccal K, Bordon K, et al. Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. J Venom Anim Toxins Incl Trop Dis. 2015; 115(1):8–16.

(41) Ramírez-Bello V, Sevcik C, Peigneur S, Tytgat J, D’Suze G. Macrophage alteration induced by inflammatory toxins isolated from Tityus discrepans scorpion venom. the role of Na+/Ca2+ exchangers. Toxicon. 2014; 82(1):61–75.

(42) Fialho E, Maciel M, Silva A, Reis A, Assunção A, Fortes T, et al. Immune cells recruitment and activation by Tityus serrulatus scorpion venom. Toxicon. 2011; 58(6–7):480–5.

(43) Borges C, Silveira M, Beker M, Freire-Maia L, Teixeira M. Scorpion venom-induced neutrophilia is inhibited by a PAF receptor antagonist in the rat. J Leukoc Biol. 2000; 67(4):515–519.

(44) Salman M, Hammad S. Oxidative stress and some biochemical alterations due to scorpion (Leiurus quinquestriatus) crude venom in rats. Biomed Pharmacother. 2017; 91(1):1017–1021.

(45) Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Involvement of Toll-like Receptor 4 in Neutrophil-Mediated Inflammation, Oxidative Stress and Tissue Damage Induced by Scorpion Venom. Inflammation. 2020; 43(1):155–167.

(46) Borges A, Op den Camp H, De Sanctis J. Specific activation of human neutrophils by scorpion venom: A flow cytometry assessment. Toxicol In Vitro 2011; 25(1):358–367.

(47) Casella-Martins A, Ayres L, Burin SM, Morais F, Pereira J, Faccioli L, et al. Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. J Venom Anim Toxins Incl Trop Dis. 2015; 21(1):4–11.

(48) Bertazzi D, De Assis-Pandochi A, Talhaferro V, Seixas Azzolini A, Pereira Crott L, Arantes E. Activation of the complement system and leukocyte recruitment by Tityus serrulatus scorpion venom. Int Immunopharmacol. 2005; 5(6):1077–1084.

(49) Bartholomew C, Murphy J, McGeeney K, Fitzgerald O. Exocrine pancreatic response to the venom of the scorpion, Tityus trinitatis. Gut. 1977; 18(8):623–625.

(50) Gallagher S, Sankaran H, Williams JA. Mechanism of scorpion toxin-induced enzyme secretion in rat pancreas. Gastroenterology. 1981; 80(1):970–973.

(51) Bartholomew C, McGeeney K, Murphy J, Fitzgerald O, Sankaran H. Experimental studies on the aetiology of acute scorpion pancreatitis. Br J Surg. 1976; 63(10):807–810.

(52) Wang G-J, Gao C-F, Wei D, Wang C, Ding S-Q. Acute pancreatitis: etiology and common pathogenesis. World J Gastroenterol. 2009; 15(12):1427–1430.

(53) Novaes G, Catanzaro O, Beraldo W, Freire-Maia L. Effect of purified scorpion toxin (tityustoxin) on the pancreatic secretion of the rat. Toxicon. 1982; 20(5):847–53.

(54) Sah RP, Saluja A. Molecular mechanisms of pancreatic injury. Curr Opin Gastroenterol. 2011;27(5):444–51.

(55) Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med. 2014;20:466–77.

(56) Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J. Inflammatory mediators in acute pancreatitis. J Pathol. 2000;190(2):117–25.

(57) Foitzik T, Eibl G, Hotz B, Hotz H, Kahrau S, Kasten C, et al. Persistent Multiple Organ Microcirculatory Disorders in Severe Acute Pancreatitis. 2002;47(1):130–8

(58) Gukovskaya AS, Gukovsky I, Zaninovic V, Song M, Sandoval D, Gukovsky S, et al. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-?. Role in regulating cell death and pancreatitis. J Clin Invest. 1997;100(7):1853–62.

(59) Rakonczay Z, Hegyi P, Takács T, McCarroll J, Saluja AK. The role of NF-?B activation in the pathogenesis of acute pancreatitis. Gut. 2008;57(2):259–67

(60) Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Reddy DN, Talukdar R. NF-?B in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 2016;16(4):477–88.

(61) Caballero C, Jara L. DIAGNÓSTICO Y TRATAMIENTO EN EL EDEMA AGUDO DE PULMÓN. Rev Esp Patol Torac. 2012;24(2):186–94.

(62) Colmenero M, Fernández E, García M, Rojas M, Lozano L, Poyatos M. Conceptos actuales en la fisiopatología, monitorización y resolución del edema pulmonar. Med Intensiva. 2006;30(7):322–30

(63) Abroug F, Souheil E, Ouanes I, Dachraoui F, Fekih-Hassen M, Ouanes Besbes L. Scorpion-related cardiomyopathy: Clinical characteristics, pathophysiology, and treatment. Clinical Toxicoly. 2015; 53(6):511–8.

(64) Miranda C, Braggion-Santos M, Schmidt A, Pazin-Filho A, Cupo P. The first description of cardiac magnetic resonance findings in a severe scorpion envenomation: Is it a stress-induced (Takotsubo) cardiomyopathy like? American Journal of Emergency Medicine. 2015; 33(6):862.e5-862.e7.

(65) Wittstein I, Thiemann D, Lima J, Baughman K, Schulman S, Gerstenblith G, et al. Neurohumoral Features of Myocardial Stunning Due to Sudden Emotional Stress. The New England Journal of Medicine. 2005; 352(6):539–548.

(66) Bahloul M, Chaari A, Dammak H, Samet M, Chtara K, Chelly H, et al. Pulmonary edema following scorpion envenomation: Mechanisms, clinical manifestations, diagnosis and treatment. International Journal of Cardiology. 2013; 162(2):86–91.

(67) Teixeira AL, Fontoura B, Freire-Maia L, Machado C, Camargos E, Teixeira M. Evidence for a direct action of Tityus serrulatus scorpion venom on the cardiac muscle. Toxicon. 2001;39(5):703–9.

(68) Ouanes-Besbes L, El Atrous S, Nouira S, Aubrey N, Carayon A, El Ayeb M, et al. Direct vs. mediated effects of scorpion venom: an experimental study of the effects of a second challenge with scorpion venom. Intensive Care Med. 2005; 31(3):441–446.

(69) Bahloul M, Ben Hamida C, Chtourou K, Ksibi H, Dammak H, Kallel H, et al. Evidence of myocardial ischaemia in severe scorpion envenomation: Myocardial perfusion scintigraphy study. Intensive Care Med. 2004; 30(3):461–467.

(70) Amaral C, Barbosa A, Leite V, Tafuri W, de Rezende N. Scorpion sting-induced pulmonary edema: Evidence of increased alveolocapillary membrane permeability. Toxicon. 1994; 32(8):999–1003.

(71) Iasha Sznajder J. Edema pulmonar no cardiogénico. Arch Bronconeumol. 1990; 26(1):28–36.

(72) Cardona V, Cabañes N, Chivato T, De la Hoz B, Fernández M, Gangoiti I, et al. Guía de actuación en Anafilaxia: Galaxia. 2016.

(73) Feola A, Perrone M, Piscopo A, Casella F, Della Pietra B, Di Mizio G. Autopsy Findings in Case of Fatal Scorpion Sting: A Systematic Review of the Literature. Healthcare. 2020; 8(3):325-325.

(74) Abdel-Haleem A-HA, Meki A-RMA, Noaman HA, Mohamed ZT. Serum levels of IL-6 and its soluble receptor, TNF-alpha and chemokine RANTES in scorpion envenomed children: their relation to scorpion envenomation outcome. Toxicon. 2006 Mar;47(4):437–44.

(75) Bahloul M, Turki O, Chaari A, Bouaziz M. Incidence, mechanisms and impact outcome of hyperglycaemia in severe scorpion-envenomed patients. Ther Adv Endocrinol Metab. 2018 Jul;9(7):199–208.

(76) Alcázar R, Albalate M, De Sequera P. Trastornos del metabolismo ácido-base. Nefrologia al día. 2019; 4:161–242.

Downloads

Published

2022-09-05

How to Cite

1.
The medical importance of scorpionism in Paraguay: a review of the multisystemic failure associated with scorpion envenomation and contribution to its differential diagnosis. Rev. Soc. cient. Py. [Internet]. 2022 Sep. 5 [cited 2025 Oct. 27];27(2):122-5. Available from: https://sociedadcientifica.org.py/ojs/index.php/rscpy/article/view/219

Similar Articles

1-10 of 139

You may also start an advanced similarity search for this article.