Electrochemical method coupled to atomic absorption spectrophotometry for the determination of arsenic in marine sediment of the bajoalto commune
DOI:
https://doi.org/10.32480/rscp.2020.25.2.111Keywords:
electroanalytical, atomic absorption, volatile hydride, arsenicAbstract
In this work, the design and optimization of operational parameters of a cell to generate electrochemically gaseous arsine (AsH3), easily coupled to an atomic absorption spectrophotometer, are communicated; as a sample introduction technique for the quantification of As in marine sediments of the Bajo Alto Community, Province of El Oro, Ecuador, whatever is affected by contamination due to anthropogenic activities. The accuracy, RSD and precision within the quantification method reported in this study, was determined using reference materials, optimizing a sample preparation method based on acid digestions. A detection limit on gold / mercury cathodes (Au / Hg) of 0,027 ?g L-1 (ppb) was obtained.
Metrics
Downloads
References
2. Dang DH, Tessier E, Lenoble V, Durrieu G, Omanovi? D, Mullot J-U, et al. Key parameters controlling arsenic dynamics in coastal sediments: An analytical and modeling approach. Mar Chem. 2014 Apr 20;161:34–46.
3. Rahman MA, Hasegawa H, Lim RP. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res. 2012 Jul;116:118–35.
4. Londoño-Franco LF, Londoño-Muñoz PT, Muñoz-García FG. Los riesgos de los metales pesados en la salud humana y animal. Biotecnología en el Sector Agropecuario y Agroindustrial. 2016;14(2):145–53.
5. Kim D, Bloom MS, Parsons PJ, Fitzgerald EF, Bell EM, Steuerwald AJ, et al. A pilot study of seafood consumption and exposure to mercury, lead, cadmium and arsenic among infertile couples undergoing in vitro fertilization (IVF). Environ Toxicol Pharmacol. 2013 Jul;36(1):30–4.
6. Mamindy-Pajany Y, Hurel C, Géret F, Galgani F, Battaglia-Brunet F, Marmier N, et al. Arsenic in marine sediments from French Mediterranean ports: geochemical partitioning, bioavailability and ecotoxicology. Chemosphere. 2013 Mar;90(11):2730–6.
7. Llorente-Mirandes T, Barbero M, Rubio R, López-Sánchez JF. Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chem. 2014 Sep 1;158:207–15.
8. Saborío Morales L, Hidalgo Murillo LF. Consumo de arsénico y riesgo cardiovascular. Medicina Legal de Costa Rica. 2015;32(1):114–8.
9. Iaquinta F. Estudio de la toxicidad del arsénico, aguda y exónica, y de las formas de evaluación y control del mismo en población afectada. 2012; Available from: https://www.colibri.udelar.edu.uy/jspui/bitstream/123456789/1427/1/uy24-15591.pdf
10. Sohn E. Contamination: The toxic side of rice. Nature. 2014 Oct 30;514(7524):S62–3.
11. Ramírez AV. Exposición ocupacional y ambiental al arsénico: actualización bibliográfica para investigación científica. In: Anales de la Facultad de Medicina. UNMSM. Facultad de Medicina; 2013. p. 237–48.
12. Amador LRT, Martínez FDG, Hernández LJM, Vergara LAW, Suárez JNC. Niveles de metales pesados en muestras biológicas y su importancia en salud. Revista Nacional de Odontología [Internet]. 2015Dec 30 [cited 2018 Oct 26];11(21). Available from: http://revistas.ucc.edu.co/index.php/od/article/view/895
13. Fattorini D, Sarkar SK, Regoli F, Bhattacharya BD, Rakshit D, Satpathy KK, et al. Levels and chemical speciation of arsenic in representative biota and sediments of a tropical mangrove wetland, India. Environ Sci Process Impacts. 2013 Apr;15(4):773–82.
14. Cuellas Díaz M. Determinación de arsénico en muestras medioambientales utilizando diferentes plataformas electródicas. 2015; Available from: http://digibuo.uniovi.es/dspace/handle/10651/32405
15. ?ervený V, Horváth M, Broekaert JAC. Determination of mercury in water samples by electrochemical cold vapor generation coupled to microstrip microwave induced helium plasma optical emission spectrometry. Microchem J. 2013 Mar 1;107:10–6.
16. Caiminagua A, Fernández L, Romero H, Lapo B, Alvarado J. Electrochemical generation of arsenic volatile species using a gold/mercury amalgam cathode. Determination of arsenic by atomic absorption spectrometry. Analytical Chemistry Research. 2015 Mar 1;3:82–8.
17. Quevedo-Álvarez O. Primer estudio de la contaminación por Arsénico en sedimentos de la bahía de Matanzas, Cuba. Rev CENIC [Internet]. 2014; Available from: https://pdfs.semanticscholar.org/c87a/ee7dcdfea7b9fce00e875df4a9e526476526.pdf
18. Be?dowski J, Szubska M, Emelyanov E. Concentraciones de arsénico en los sedimentos del Mar Báltico cerca de los vertederos de municiones químicas. Deep Sea Res Part I [Internet]. 2016; Available from: https://www.sciencedirect.com/science/article/pii/S0967064515000788
19. Sankararamakrishnan N, Mishra S. A Comprehensive Review on Various Analytical Methods for the Determination of Inorganic and Organic Arsenic in Environmental Samples. In: Gupta T, Agarwal AK, Agarwal RA, Labhsetwar NK, editors. Environmental Contaminants: Measurement, Modelling and Control. Singapore: Springer Singapore; 2018. p. 21–41.
20. Abdel-Lateef AM, Mohamed RA, Mahmoud HH. Determination of arsenic (III) and (V) species in some environmental samples by atomic absorption spectrometry. Advances in Chemical Science. 2013;2(4):110–3.
Downloads
Published
Issue
Section
License
El/los autores autorizan a la Revista de la Sociedad Científica del Paraguay a publicar y difundir el articulo del cual son autores, por los medios que considere apropiado.