Biomimetic coating of alumina scaffolds at different immersion times
DOI:
https://doi.org/10.32480/rscp.2025.30.1.4455Palabras clave:
Scaffold, Alumina, Biomimetic coating, Bioceramics, PorosityResumen
The biomimetic method can be used to coat scaffolds with calcium phosphate to improve bioactivity. This method presents the advantages of low cost, reproducibility, and applicability to complex surface and porous structures. This study aimed to manufacture alumina scaffolds coated with calcium phosphate by a biomimetic method for use as a biomaterial. The scaffolds were compacted at 200 MPa with 40 wt.% ammonium bicarbonate and 60 wt.% alumina, subjected to heat treatment at 270 °C for 120 min, and sintered at 1500 °C for 120 min. The samples were biomimetically coated by immersing them in a simplified solution of calcium chloride dihydrate (CaCl2.2H2O) and sodium hydrogen phosphate dihydrate (Na2HPO4.2H2O) for 7, 14, and 21 days. The samples were characterized by Archimedes' principle for density and porosity determination, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR). The scaffolds showed a porosity of 55%, with homogeneous distribution, interconnection, and pore sizes. Calcium phosphate formation was observed on the scaffold surfaces after 21 days of biomimetic coating. The samples presented promising results for use as biocompatible scaffolds.
Métricas
Descargas
Referencias
1. Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone & Joint Research. 2018;7(3):232-43. Disponible en: 10.1302/2046-3758.73.BJR-2017-0270.R1
2. Barnsley J, Buckland G, Chan PE, Ong A, Ramos AS, Baxter M, et al. Pathophysiology and treatment of osteoporosis: challenges for clinical practice in older people. Aging Clin Exp Res. 2021;33(4):759-73. Disponible en: https://link.springer.com/10.1007/s40520-021-01817-y
3. Ahmed MK, Ramadan R, Afifi M, Menazea AA. Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. Journal of Materials Research and Technology. 2020;9(4):8854-66. Disponible en: 10.1016/j.jmrt.2020.06.006
4. Li Q, Chang B, Dong H, Liu X. Functional microspheres for tissue regeneration. Bioactive Materials. 2023; 25:485-99. Disponible en: 10.1016/j.bioactmat.2022.07.025
5. Fernandes L, De Carvalho RA, Amaral AC, Pecoraro E, Salomão R, Trovatti E. Mullite cytotoxicity and cell adhesion studies. Journal of Materials Research and Technology. 2019; 8(3):2565–2572. Doi: 10.1016/j.jmrt.2019.04.001
6. Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomaterials. 2017;59:2–11. Disponible en: 10.1016/j.actbio.2017.06.046
7. Coelho CC, Padrao T, Costa L, et al. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Scientific Reports. 2020; 10(1):19098. Doi: 10.1038/s41598-020-76063-9
8. Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. Journal Functional Biomaterials. 2023; 14(4):212. Disponible en: 10.3390/jfb14040212
9. Coelho CC, Araújo R, Quadros PA, Sousa SR, Monteiro FJ. Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopedic infections. Materials Science and Engineering C. 2019;97:529–538. Disponible en: 10.1016/j.msec.2018.12.059
10. Liu D, Liu Z, Zou J, et al. Synthesis and Characterization of a Hydroxyapatite-Sodium Alginate-Chitosan Scaffold for Bone Regeneration. Frontiers in Materials. 2021; 8:648980. Disponible en: 10.3389/fmats.2021.648980
11. Fan X. Preparation and performance of hydroxyapatite/Ti porous biocomposite scaffolds. Ceramics International. 2019;45(13):16466–16469. Disponible en: 10.1016/j.ceramint.2019.05.178
12. Mahmoodiyan Najafabadi F, Karbasi S, Zamanlui Benisi S, Shojaei S, Poursamar SA, Nasr Azadani R, Evaluation of the effects of alumina nanowire on 3D printed polycaprolactone/magnetic mesoporous bioactive glass scaffold for bone tissue engineering applications. Materials Chemistry and Physics. 2023;303: 127616. Disponible en: 10.1016/j.matchemphys.2023.127616
13. Ghafari F, Karbasi S, Eslaminejad MB. Investigating of physical, mechanical, and biological properties of polyhydroxybutyrate-keratin/alumina electrospun scaffold utilized in bone tissue engineering. Materials Chemistry and Physics. 2023;297:127340. Disponible en: 10.1016/j.matchemphys.2023.127340
14. Kim JM, Son JS, Kang SS, Kim G, Choi SH. Bone regeneration of hydroxyapatite/alumina bilayered scaffold with 3 mm passage-like medullary canal in canine tibia model. BioMed Research International. 2015:1-6. Disponible en: 10.1155/2015/235108
15. Anita Lett J, Sundareswari M, Ravichandran K. Porous hydroxyapatite scaffolds for orthopedic and dental applications-the role of binders. In Materials Today: Proceedings. 2016;3(6):1672-1677. Disponible en: 10.1016/j.matpr.2016.04.058
16. Feng S, He F, Ye J. Fabrication and characterization of honeycomb β-tricalcium phosphate scaffolds through an extrusion technique. Ceramics International. 2017;43(9):6778–6785. Disponible en: 10.1016/j.ceramint.2017.02.094
17. Ren X, Tuo Q, TianK, et al. Enhancement of osteogenesis using a novel porous hydroxyapatite scaffold in vivo and vitro. Ceramics International. 2018;44(17):21656–21665. Disponible en: 10.1016/j.ceramint.2018.08.249
18. Sartori TAI, Ferreira JA, Osiro D, Colnago LA, Agnolon Pallone EMJ. Formation of different calcium phosphate phases on the surface of porous Al2O3-ZrO2 nanocomposites. Journal of the European Ceramic Society. 2018; 38:743–751. Disponible en: 10.1016/j.jeurceramsoc.2017.09.014
19. Camilo CC. Implantes de alumina em gradiente funcional de porosidade recobertos com hidroxiapatita e biovidro: avaliação da osseointegração. Escola de Engenharia de São Carlos da Universidade de São Paulo, 2010.
20. Abe Y, Kokubo T, Yamamuro T. Apatite coating on ceramics, metals, and polymers utilizing a biological process. Journal of Materials Science: Materials in Medicine. 1990; 1:233–238. Disponible en: doi.org/10.1007/BF00701082
21. Gu Y, Liu Y, Jacobs R, et al. BMP-2 incorporated into a biomimetic coating on 3D-printed titanium scaffold promotes mandibular bicortical bone formation in a beagle dog model. Materials & Design. 2023;228:111849. Disponible en: 10.1016/j.matdes.2023.111849
22. Dos Santos KH, Ferreira JA, Osiro D, Da Conceição GJA, Filho RB, Colnago LA, et al. Influence of different chemical treatments on the surface of Al2O3/ZrO2 nanocomposites during biomimetic coating. Ceramics International. 2017;43(5):4272-9. Disponible en: 10.1016/j.ceramint.2016.12.069
23. Rambo CR, Müller FA, Müller L, Sieber H, Hofmann I, Greil P. Biomimetic apatite coating on biomorphous alumina scaffolds. Materials Science and Engineering C. 2006;26(1):92–99. Disponible en: 10.1016/j.msec.2005.06.003
24. Zafar B, Mottaghitalab F, Shahosseini Z, Negahdari B, Farokhi M. Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. Materialia. 2020; 9:100518. Disponible en: 10.1016/j.mtla.2019.100518
25. Zhou X, Guan C, Ma Q, et al. Elaboration and characterization of ε-polylysine sodium alginate nanoparticles for sustained antimicrobial activity. International Journal Biological Macromolecules. 2023;251(1):126329. Disponible en: 10.1016/j.ijbiomac.2023.126329
26. Costa HS, Mansur AAP, Barbosa-Stancioli IF, Pereira MM, Mansur HS. Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA. In Journal of Materials Science. 2008;43:510–524. Disponible en: 10.1007/s10853-007-1849-6
27. Duraccio D, Strongone V, Malucelli G, et al. The role of alumina-zirconia loading on the mechanical and biological properties of UHMWPE for biomedical applications. Composites Part B: Engineering. 2019;164(1):800–808. Disponible en: 10.1016/j.compositesb.2019.01.097
28. Deb P, Barua E, Deoghare AB, Das Lala S. Development of bone scaffold using Puntius conchonius fish scale derived hydroxyapatite: Physico-mechanical and bioactivity evaluations. Ceramics International. 2019;45(8):10004–10012. Disponible en: 10.1016/j.ceramint.2019.02.044
29. Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomaterialia. 2014;10(10):4071-4102. Disponible en: 10.1016/j.actbio.2014.06.017
30. Toloue EB, Karbasi S, Salehi H, Rafienia M. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Materials Science and Engineering C. 2019;99:1075–1091. Disponible en: 10.1016/j.msec.2019.02.062
31. El-Mehalawy N, Sayed M, Abou El-Anwar EA, Soliman AAF, Naga SM. Preparation and characterization of bioceramic composites based on anorthite and β-TCP from dolomitic phosphate and kaolin rocks. Materials Chemistry and Physics. 2024;312(15): 128625. Disponible en: 10.1016/j.matchemphys.2023.128625
32. Oliveira IR, Goncalves IS, dos Santos KW, et al. Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillers. ACS Materials Au. 2023;3(6):646-658. Disponible en: 10.1021/acsmaterialsau.3c00048
33. Pinto E Souz IE, De Carvalho SM, Martins T, De Magalhães Pereira M. Fluorine-containing bioactive glass spherical particles synthesized by sol-gel route assisted by ultrasound energy or mechanical mixing. Materials Research. 2020;23(3):16–19. Disponible en: 10.1590/1980-5373-MR-2020-0070
34. Silva JC. Desenvolvimento de carreadores lipídicos nanoestruturados como sistema de carreamento de extrato de Cúrcuma longa e avaliação biológica in vitro em células de câncer de bexiga. Master, Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo, 2017.
35. Kim HM, Himeno T, Kawashita M, Kokubo T, Nakamura T. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: An in vitro assessment. Journal of the Royal Society Interface.2004;1(1):17–22. Disponible en: 10.1098/rsif.2004.0003
36. Mondal S, Hoang G, Manicasagan P, et al. Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceramics International. 2018;44(13):15735–15746. Disponible en: 10.1016/j.ceramint.2018.05.248
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Revista de la Sociedad Científica del Paraguay

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El/los autores autorizan a la Revista de la Sociedad Científica del Paraguay a publicar y difundir el articulo del cual son autores, por los medios que considere apropiado.