Eficiencia de la absorción de cobre (Cu) y cromo (Cr), una propuesta de fitorremediación de efluentes mediada por Typha domingensis

Authors

DOI:

https://doi.org/10.32480/rscp.2021.26.2.100

Keywords:

typha domingensis, contamination of water resources, heavy metals, bioremediation

Abstract

The rapid growth of world population and the consequent demand for natural resources are reflected in the environmental problems that affect the whole planet, one of these problems is the increasing contamination of water resources by heavy metals. Paraguay does not escape from this problem, the rivers, streams and lakes pollution increases progressively, having the high heavy metals content as one of the most dangerous component. Typha dominguensis, better known as totora (South America), is a cosmopolitan marsh plant, widely adapted in both the Eastern and Western regions of Paraguay. This species is studied for its bioremediation properties of polluted waters. In the Multidisciplinary Center for Technological Research CEMIT/UNA, the experiment was carried out to evaluate the absorption of heavy metals commonly found in wastewater: chromium and copper, in aqueous solutions, in three different concentrations, in three repetitions. The used design was completely random. T. domingensis plants were conditioned in the CEMIT greenhouse starting from seeds arranged in buckets with 50 L of metal solution, with 5 plants each bucket. Initially the plants were acclimatized for a 30 days period, later were exposed to metallic solutions. The chromium and copper content, pH, O2 and temperature values of metallic solution were taken on days 1, 17 and 45 from initial exposure, samples were analyzed in the Water Quality Laboratory of CEMIT/UNA. Metallic solutions without treatment with T. dominguensis plants and plants without contact with metallic solutions were used as a control. The results were collated by the statistical program InfoStat® performing an ANOVA and Tukey's test. The results indicated significant differences in the removal of the content of copper and chromium in the three concentrations of metallic solutions, thus demonstrating that the plant has the ability to absorb heavy metals, however in the controls (metallic solutions without plants) it was not observed changes in the content of these two metals.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

(1) Glick BR. Phytoremediation: synergistic use of plants and bacteria toclean up theenvironment. Biotechnol. 2003;(21):383:93.

(2) Romero K. Contaminación por metales pesados. Rev Cient Cienc Méd [Internet]. 2009 [citado 2021 oct 18];12(1):45-46. Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1817-74332009000100013&lng=es

(3) Lucho CA, Prieto F, Del Razo LM, Rodríguez R, Poggi H. Chemicalfractionation of boron and heavy metals in soilsirrigatedwithwastewater in central Mexico. Agriculture, Ecosystems and Environment. 2005;108:57–71.

(4) Abollino O, Aceto M, Malandrino M, Mentaste E, Sarzanini C, Barberis R. Distribution and Mobility of Metals in ContaminatedSites. ChemometricInvestigation of PollutantProfiles. EnvironmentalPollution. 2002;119:177.

(5) Angelova V, Ivanova R, Delibaltova V, Andivanov K. Bio-accumulation and distribution of heavy metals in fibrecrops (flax, cotton and hemp). Industrial Crops and Products. 2004;19:197–205.

(6) Arthur EL, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR. Phytoremediation - Anoverview. CritRevPlantSci. 2005;24:109-122.

(7) Glazer AN, Nikaido Y. Microbial Biotechnology: Fundamentals of Applied Microbiology (2nd ed.). New York: W. H. Freeman and Company,1999.

(8) Atlas RM, Unterman Y. Bioremediation. Manual of Industrial Microbiology and Biotechnology (2nd ed.). Washington D.C.: ASM Press; 1999.

(9) Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T. Phytoremediationforthemanagementof metal fluxncontaminatedsite. SnowLandsc. 2006;80:221-234.

(10) Melcer R, Post L. Merging genes louldcreateplantsthatcleancontaminatedground. Fromgreentoclean; 2004.

(11) Le Duc D, Terry N. Phytoremediation of toxic trace elements in soil and water.JournalInd. Microbiol. Biotechnol. 2005;32:514-520.

(12) Stoltz EY, Greger M. Accumulationproperties of As, Cd, Cu, Pb and Zn byfourwetlandplantspeciesgrowingonsubmerged mine tailings. Environ. Exp. Bot. 2002;47:271-280.

(13) Reddy S. Agroclimaticclasification of semiaridtropics. II Identification of clasificatory variables. Agric. Meteorol. 1983;30:201-219.

(14) Gersberg RM, Elkins BV, Lyon SR, Goldman CR. Role of aquaticplants in wastewatertreatmentby artificial wetlands. Wat. Res. 1986;20:363-368.

(15) Dushenkov VP, Nanda Kumar BA, Motto HY, Raskin Y. Rhizofiltration: The use of Plantstoremove Heavy MetalsfromAqueousStreams. Environ. Sci. Technol. 1995;29:1239-1245.

(16) Hadad HR, Maine MA, Mufarrege MM, Del Sastre MV, Di Luca GA. Bioaccumulationkinetics and toxiceffectsofCr, Ni and Zn on Eichhorniacrassipes. J. Haz. Mat. 2011;190:1016-1022.

(17) Deng H, Yea ZH, Wong YMH. Accumulation of lead, zinc, copper and cadmiumby 12 wetlandplantspeciesthriving in metal-contaminatedsites in China. Environ. Poll. 2004;132:29-40.

(18) Keddy PA, Twolan-Strutt L, Wisheu IC. Competitiveeffectand response rankings in 20 wetlandplants: are theyconsistentacrossthreeenvironments. J. Ecol. 1994;82:635-643.

(19) Stevens PF. «Typhaceae» (en inglés). AngiospermPhylogenyWebsite. 2008 [citado 30 de ene del 2019].

(20) Mufarrege M, Hadad H, Maine M. Response of Pistiastratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. 2010. Arch. Environ. Contam. Toxicol. 58:53-61.

(21) Degen R. Mereles F. Typhaceae. Fl. Paraguay. Edit. R. Spichiger& L. Ramella. 1999;28:14.

(22) Samudio A, Nakayama H, Peralta I, Cardozo C. calidad fisiologica de semillas de Typha Domingensis Pers. (Totora) y su propagación en condiciones controladas. Revista Rojasiana. 2014;13(53):62.

(23) Maine MA, Suñe N, Panigatti MC, Sánchez M, Hadad H. Wetland piloto para tratamiento de un efluente metalúrgico. Ingeniería Sanitaria y Ambiental. 2001;64:72-77.

(24) Torres G, Navarro A, Languasco J, Campos K, Cuizano N. Estudio preliminar de la fitoremediación de cobre divalente Mediante Pistiastratioides (lechuga de agua). Revista Latinoamericana de Recursos Naturales. 2007;3(1):13-20. Consultado el 5 de octubre del 2019. En línea: http://www.itson.mx/publicaciones/rlrn/Documents/v3-n1-2-estudio-preliminar-de-la-fitoremediacion-de-cobre.pdf

(25) Coleman J, Hench K, Garbutt K, Sexstone A, Bissonnette G, Skousen J. Treatment of domesticwastewaterbythreeplantspecies in constructedwetland. Water, Air and SoilPollution. 2001;128(3-4):283-295.

Downloads

Published

2021-11-30

Issue

Section

Original Article

How to Cite

1.
Eficiencia de la absorción de cobre (Cu) y cromo (Cr), una propuesta de fitorremediación de efluentes mediada por Typha domingensis. Rev. Soc. cient. Py. [Internet]. 2021 Nov. 30 [cited 2025 Oct. 7];26(2):100-13. Available from: https://sociedadcientifica.org.py/ojs/index.php/rscpy/article/view/208

Similar Articles

21-30 of 32

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)